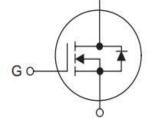


650V N-Channnel Super Junction Power MOSFET

DESCRIPTION


The **65R180F** use advanced super junction technology and design to provide excellent RDS(ON) with low gate charge. This supper junction MOSFET has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies.

FEATURES

- *New technology for high voltage device *Ultra Low Gate Charge *Ultra Low Crss
- VIII'A LOW CISS
- *Fast Switching *Improved dv/dt Capability

SYMBOL

- 1. Gate
- 2. Drain
- 3. Source

D

S Package Description

CMS65R180F TO-2 CMS65R180F	220F CMS65R180	F	Tube
CMS65R180F			
	(2) Package type(1) Chip name		
(1) CMS65R180F: 650V 21A	(2) F:TO-220F		

261

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C, unless otherwise specified)

	PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage			Vdss	650	V
Gate-Source Voltage			Vgss	±30	V
Drain Current	Continuous	(Tc=25°C)	lD	21.0	А
	Continuous	(Tc=100°C)		13.2	А
Drain Current	Pulsed (Not	te1)	Ідм	63	А
Avalanche Energy	Single Pulse	,	Eas	690	mJ
Avalanche Current(Note	e1)		lar	7.0	A
Repetitive Avalanche E	nergy (Note1)		Ear	1.0	mJ
Drain Source voltage sl	ope, V⊳s≪480V		dv/dt	50	V/ns
Power Dissipation	Tc=25°C	TO-220F	PD	34.0	W
Junction Temperature	1	1	TJ	+150	°C
Storage Temperature			Тѕтс	-55~+150	°C
L Notes: 1.Repetitive Rating:Puls 2.TJ = 25°C , VDD = 50V,	-		n Temperature.		
THERMAL CHA	RACTERIST		12		

THERMAL CHARACTERISTICS

Symbol	Parameter	PACKAGE	RATINGS	Units
Rejc	Junction-to-Case	TO-220F	3.67	°C /W
Reja	Junction-to-Ambient	TO-220F	80	°C /W

ELECTRICAL CHARACTERISTICS (Tc = 25°C, unless otherwise specified)

PARAMETER	2	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	
OFF CHARACTERISTICS		•	·				
Drain-Source Breakdown Vo	oltage	Bvdss	V _{GS} = 0 V, I _D = 250µA	650			V
Zero Gate Voltage Drain Cu	rrent	loss	V _{DS} = 650 V, V _{GS} = 0 V			1	μA
Gate-Source Leakage	Forward		V _{GS} = 30 V, V _{DS} = 0 V			100	nA
Current	Reverse	IGSS	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
ON CHARACTERISTICS		•					•
Gate Threshold Voltage		Vgs(th)	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		3.5	V
Static Drain-Source On- Re	sistance	Rds(on)	V _{GS} = 10 V, I _D =10.5A		150	180	mΩ
DYNAMIC CHARACTERIS	TICS						
Input Capacitance		Ciss			1950		pF
Output Capacitance		Coss	V _{DS} =50 V, V _{GS} =0V , _f = 1.0MHz		150		pF
Reverse Transfer Capacitar	ice	Crss			5.0		pF
SWITCHING CHARACTER	ISTICS						
Total Gate Charge		QG			45		nC
Gate-Source Charge		QGS	V _{DS} = 480V, I _D = 21A, V _{GS} = 10V		9.0		nC
Gate-Drain Charge		QGD			18		nC
Turn-On Delay Time		td(on)			11		ns
Turn-On Rise Time		tR	V _{DS} = 380V, I _D =11A,		6.0		ns
Turn-Off Delay Time		td(off)	R _G =4Ω, V _{GS} = 10V		61		ns
Turn-Off Fall Time		t⊧			4.5		ns
Drain-Source Diode Chara	cteristics and	d Maximum Rating	<u>js</u>				
Maximum Continuous Drain Diode Forward Current	-Source	Isd				21	А
Maximum Pulsed Drain-Sou Forward Current	irce Diode	Іѕм				63	А
Drain-Source Diode Forwar	d Voltage	Vsd	TJ=25℃ ,VGs = 0 V			1.2	V
Reverse Recovery Time		t _{rr}	TJ=25℃, I _F = 21A,		310		ns
Reverse Recovery Charge		Qrr	dl⊧/dt = 100 A/µs		5.0		μC

* Drain Current Limited by Maximum Junction Temperature.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (curves)

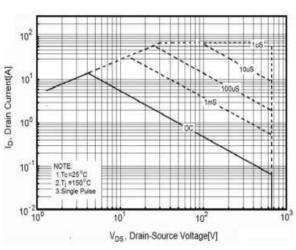
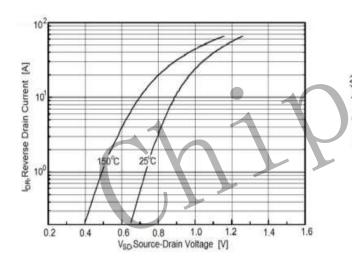



Figure1. Safe operating area for TO-220F

9.8 PEDALO PER CONCERSION CONCERSION DE CONCERSION

Figure3. Source-Drain Diode Forward Voltage

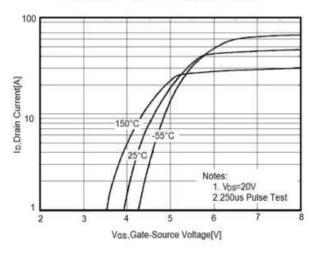


Figure2. Capacitance

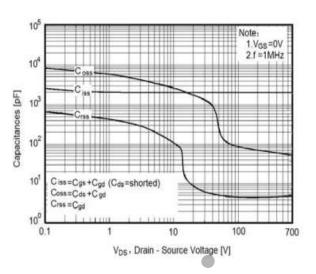


Figure4. Output characteristics

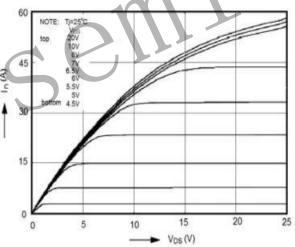
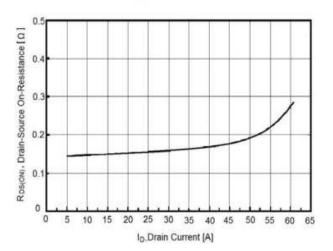
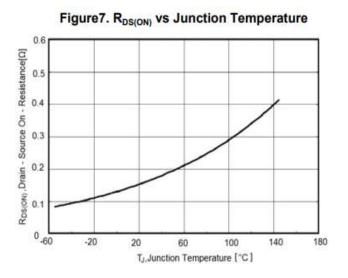




Figure6. Static drain-source on resistance

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS(Cont.)

Figure9. Maximum Ip vs Junction Temperature

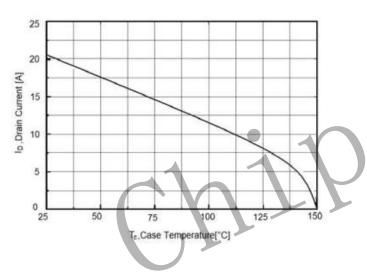


Figure8. BV_{DSS} vs Junction Temperature

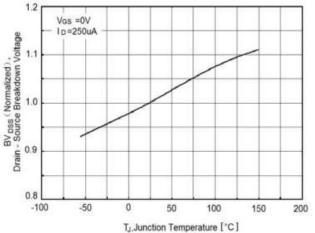
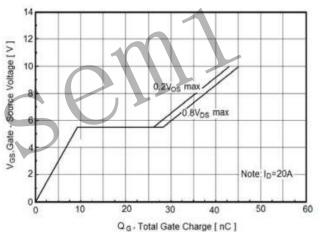
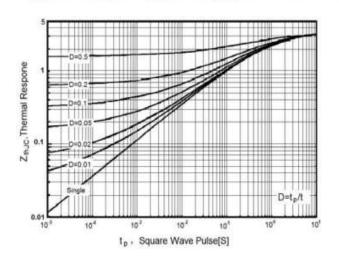
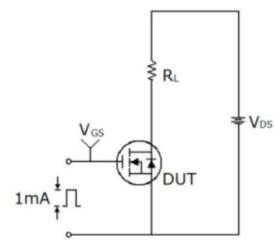
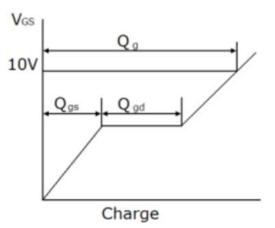
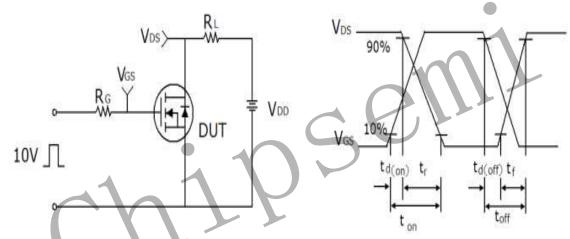


Figure10. Gate charge waveforms

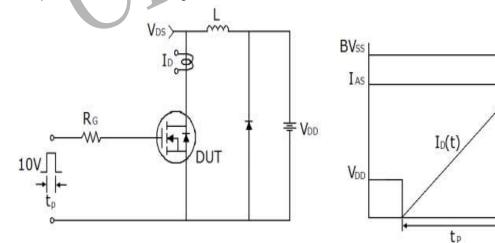




Figure11. Transient Thermal Impedance for TO-220F




TEST CIRCUITS

1) Gate charge test circuit & Waveform



2) Switch Time Test Circuit :

3) Unclamped Inductive Switching Test Circuit & Waveforms

V_{DS}(t)

time

Attentions

- Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. Please do not exceed the absolute maximum ratings of the device when circuit designing.
- > When installing the heat sink, please pay attention to the torsional moment and the smoothness of the heat sink.
- MOSFET is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- > Chipsemi reserves the right to make changes in this specification sheet and is subject to change without prior notice.

Appendix

Revision history:

Date
2023.3